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Definicja 1. Calabi–Yau manifold is a smooth, projective (kähler)
threedimensional variety X such that
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threedimensional variety X such that
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Definicja 1. Calabi–Yau manifold is a smooth, projective (kähler)
threedimensional variety X such that

1. b1(X) = 0,

2. KX = 0.

there are no global holomorphic 1–forms on X
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2. KX = 0.

there are no global holomorphic 1–forms on X

there exists a nowhere vanishing global holomorphic 3–forms X
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Definicja 1. Calabi–Yau manifold is a smooth, projective (kähler)
threedimensional variety X such that

1. b1(X) = 0,

2. KX = 0.

there are no global holomorphic 1–forms on X

there exists a nowhere vanishing global holomorphic 3–forms X

Equivalently: Calabi–Yau is a compact riemannian manifold with
holonomy group in SU(3), Ricci flat.

(Calabi Conjecture (1954) proved by Yau (1976))



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Numerical invariants of Calabi–Yau manifolds

• Euler characteristic e(X),

• Hodge numbers hi,j (0 ≤ i, j ≤ 3, i + i ≤ 6),

• Betti numbers b0, . . . , b6, (bp =
∑

i+j=p

hij = dimC Hp(X, C)).
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Numerical invariants of Calabi–Yau manifolds

• Euler characteristic e(X),

• Hodge numbers hi,j (0 ≤ i, j ≤ 3, i + i ≤ 6),

• Betti numbers b0, . . . , b6, (bp =
∑

i+j=p

hij = dimC Hp(X, C)).

For a Calabi–Yau manifold we have

h0,0 = h0,3 = h3,0 = h3,3 = 1,

h1,0 = h0,1 = h2,0 = h0,2 = h1,3 = h3,1 = h2,3 = h3,2 = 0

e(X) = 2(h1,1 − h1,2).
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Numerical invariants of Calabi–Yau manifolds

• Euler characteristic e(X),

• Hodge numbers hi,j (0 ≤ i, j ≤ 3, i + i ≤ 6),

• Betti numbers b0, . . . , b6, (bp =
∑

i+j=p

hij = dimC Hp(X, C)).

For a Calabi–Yau manifold we have

h0,0 = h0,3 = h3,0 = h3,3 = 1,

h1,0 = h0,1 = h2,0 = h0,2 = h1,3 = h3,1 = h2,3 = h3,2 = 0

e(X) = 2(h1,1 − h1,2).

Moreover the only non–trivial Hodge numbers have the following
interpretation

h1,1 (=h2,2) equals the Picard number,

h1,2 (=h2,1) – number of deformations.
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l–adic cohomology

Let X be a variety over an algebraic closed field of characteristic
p ≥ 0 and l a prime number l 6= p. There is a nice cohomology
theory for X, the l–adic cohomology, which is a good replacement
for complex cohomology
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l–adic cohomology

Let X be a variety over an algebraic closed field of characteristic
p ≥ 0 and l a prime number l 6= p. There is a nice cohomology
theory for X, the l–adic cohomology, which is a good replacement
for complex cohomology

• The groups H i(X, Ql) are vector spaces, H i(X, Ql) = 0 for
i > 2 dim X,
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l–adic cohomology

Let X be a variety over an algebraic closed field of characteristic
p ≥ 0 and l a prime number l 6= p. There is a nice cohomology
theory for X, the l–adic cohomology, which is a good replacement
for complex cohomology

• The groups H i(X, Ql) are vector spaces, H i(X, Ql) = 0 for
i > 2 dim X,

• H i(X, Ql) is a contravariant functor in X,

• If X is smooth compact manifold then

H i(X, Ql)⊗Ql
C ∼= Hi(X, C),
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l–adic cohomology

Let X be a variety over an algebraic closed field of characteristic
p ≥ 0 and l a prime number l 6= p. There is a nice cohomology
theory for X, the l–adic cohomology, which is a good replacement
for complex cohomology

• The groups H i(X, Ql) are vector spaces, H i(X, Ql) = 0 for
i > 2 dim X,

• H i(X, Ql) is a contravariant functor in X,

• If X is smooth compact manifold then

H i(X, Ql)⊗Ql
C ∼= Hi(X, C),

• Poincare duality holds, i.e. there is a cup–product

H i(X, Ql)⊗Hj(X, Ql) −→ Hi+j(X, Ql),

H2n(X, Ql) is one dimensional and

H i(X, Ql)⊗H2n−i(X, Ql) −→ H2n(X, Ql)

is a perfect pairing.
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Frobenius map
If X is a projective variety defined over a finite field k = Fp and
X̄ = Xkk̄ is the corresponding variety over an algebraic closure of
k, we define a Frobenius morphism

Frobp : X̄ 3 (xi) 7→ (xp
i ) ∈ X̄.
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Frobenius map
If X is a projective variety defined over a finite field k = Fp and
X̄ = Xkk̄ is the corresponding variety over an algebraic closure of
k, we define a Frobenius morphism

Frobp : X̄ 3 (xi) 7→ (xp
i ) ∈ X̄.

For a point P ∈ X̄ we have P ∈ X̄pr iff P is a fixed point of Frobr
p . If

X is smooth then using the Lefschetz fixed–point formula we get

Nr := #Xpr =

2n∑
i=0

(−1)iTr(Frobr∗
p : H i(X̄, Ql)).
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Frobenius map
If X is a projective variety defined over a finite field k = Fp and
X̄ = Xkk̄ is the corresponding variety over an algebraic closure of
k, we define a Frobenius morphism

Frobp : X̄ 3 (xi) 7→ (xp
i ) ∈ X̄.

For a point P ∈ X̄ we have P ∈ X̄pr iff P is a fixed point of Frobr
p . If

X is smooth then using the Lefschetz fixed–point formula we get

Nr := #Xpr =

2n∑
i=0

(−1)iTr(Frobr∗
p : H i(X̄, Ql)).

Using the numbers Nr we form the zeta function

Z(t) = Z(X; t) = exp

( ∞∑
r=1

Nr
tr

r

)
.
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Frobenius map
If X is a projective variety defined over a finite field k = Fp and
X̄ = Xkk̄ is the corresponding variety over an algebraic closure of
k, we define a Frobenius morphism

Frobp : X̄ 3 (xi) 7→ (xp
i ) ∈ X̄.

For a point P ∈ X̄ we have P ∈ X̄pr iff P is a fixed point of Frobr
p . If

X is smooth then using the Lefschetz fixed–point formula we get

Nr := #Xpr =

2n∑
i=0

(−1)iTr(Frobr∗
p : H i(X̄, Ql)).

Using the numbers Nr we form the zeta function

Z(t) = Z(X; t) = exp

( ∞∑
r=1

Nr
tr

r

)
.

Example For X = Pn we have Z(t) =
1

(1− t)(1− pt) . . . (1− pnt)
.
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Weil Conjecture
Let X be a smooth n–dimensional projective variety define over
Fp.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Weil Conjecture
Let X be a smooth n–dimensional projective variety define over
Fp.

• Rationality. Z(t) is a rational function.
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Weil Conjecture
Let X be a smooth n–dimensional projective variety define over
Fp.

• Rationality. Z(t) is a rational function.

• Functional equation. Z(t) satisfies the following functional
equation

Z

(
1

pnt

)
= ±pnE/2tEZ(t),

where E is the top Chern class of the tangent bundle of X.
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Weil Conjecture
Let X be a smooth n–dimensional projective variety define over
Fp.

• Rationality. Z(t) is a rational function.

• Functional equation. Z(t) satisfies the following functional
equation

Z

(
1

pnt

)
= ±pnE/2tEZ(t),

where E is the top Chern class of the tangent bundle of X.

• Analogue of the Riemann hypothesis. We can write

Z(t) =
P1(t)P3(t) . . . P2n−1(t)

P0(t)P2(t) . . .
P2n(t),

where P0(t) = 1 − t, P2n(t) = 1 − pnt and Pi(t) is a polynomial
with integer coefficients, Pi(t) =

∏
(1 − αijt), where αij is an

algebraic integer with |αij| = pi/2.
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The proof of the Weil Conjecture (due to Deligne) is based on

Pi(t) = det
(
1− Frob∗p : H i(X̄, Ql)

)
.
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The proof of the Weil Conjecture (due to Deligne) is based on

Pi(t) = det
(
1− Frob∗p : H i(X̄, Ql)

)
.

Example: the zeta function for an elliptic curve equals

Z(t) =
1− at + pt2

(1− t)(1− pt)
, where |a| ≤ 2

√
p.
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The proof of the Weil Conjecture (due to Deligne) is based on

Pi(t) = det
(
1− Frob∗p : H i(X̄, Ql)

)
.

Example: the zeta function for an elliptic curve equals

Z(t) =
1− at + pt2

(1− t)(1− pt)
, where |a| ≤ 2

√
p.

Integer a is the trace of Frobenius map Frob∗p on H1(X̄, Ql). (As a

depends on p we shall denote it by ap.)
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The proof of the Weil Conjecture (due to Deligne) is based on

Pi(t) = det
(
1− Frob∗p : H i(X̄, Ql)

)
.

Example: the zeta function for an elliptic curve equals

Z(t) =
1− at + pt2

(1− t)(1− pt)
, where |a| ≤ 2

√
p.

Integer a is the trace of Frobenius map Frob∗p on H1(X̄, Ql). (As
a depends on p we shall denote it by ap.) Taking into account
the Lefschetz fixed point formula we get 1− ap + p = #X̄p, and so
|#X̄p − 1− p| ≤ 2

√
p which is the Hasse theorem.
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The proof of the Weil Conjecture (due to Deligne) is based on

Pi(t) = det
(
1− Frob∗p : H i(X̄, Ql)

)
.

Example: the zeta function for an elliptic curve equals

Z(t) =
1− at + pt2

(1− t)(1− pt)
, where |a| ≤ 2

√
p.

Integer a is the trace of Frobenius map Frob∗p on H1(X̄, Ql). (As
a depends on p we shall denote it by ap.) Taking into account
the Lefschetz fixed point formula we get 1− ap + p = #X̄p, and so
|#X̄p − 1− p| ≤ 2

√
p which is the Hasse theorem.

Taniyama–Shimura Conjecture: every elliptic curve E is mod-
ular, i.e. there exists a weight 2 and level N (where N is the
conductor of E) cusp form such that the above coefficients ap

equal coefficient of the Fourier series of that modular form.
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Modular forms.
We call Γ := SL(2, Z) the full modular group. The group

Γo(N) :=

{(
a b

c d

)
∈ Γ | c ≡ 0(mod N)

}
, for N ∈ N

having a finite index in Γ is called a Hecke subgroup of Γ.
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Modular forms.
We call Γ := SL(2, Z) the full modular group. The group

Γo(N) :=

{(
a b

c d

)
∈ Γ | c ≡ 0(mod N)

}
, for N ∈ N

having a finite index in Γ is called a Hecke subgroup of Γ.

An unrestricted modular form of weight k and level N is a holo-
morphic function f on the upper half plane H such that

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ) for

(
a b

c d

)
∈ Γo(N), τ ∈ H.
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Modular forms.
We call Γ := SL(2, Z) the full modular group. The group

Γo(N) :=

{(
a b

c d

)
∈ Γ | c ≡ 0(mod N)

}
, for N ∈ N

having a finite index in Γ is called a Hecke subgroup of Γ.

An unrestricted modular form of weight k and level N is a holo-
morphic function f on the upper half plane H such that

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ) for

(
a b

c d

)
∈ Γo(N), τ ∈ H.

Since f(z + N) = f(z) we have Fourier expansion

f(τ) =

∞∑
n=−∞

cnqn, with q = exp(2πiτ/N).
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Modular forms.
We call Γ := SL(2, Z) the full modular group. The group

Γo(N) :=

{(
a b

c d

)
∈ Γ | c ≡ 0(mod N)

}
, for N ∈ N

having a finite index in Γ is called a Hecke subgroup of Γ.

An unrestricted modular form of weight k and level N is a holo-
morphic function f on the upper half plane H such that

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ) for

(
a b

c d

)
∈ Γo(N), τ ∈ H.

Since f(z + N) = f(z) we have Fourier expansion

f(τ) =

∞∑
n=−∞

cnqn, with q = exp(2πiτ/N).

f is called a modular form iff cn = 0 for n < 0. If moreover c0 = 0,
it is a cusp form.
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Modularity conjecture for Calabi–Yau manifolds
Let X be a Calabi–Yau manifold defined over Q. Denote ti :=

tr(Frob∗p : H i(X, Ql)). We have t0 = 1, t1 = 0, t5 = 0, t6 = p3. By
the Poincare duality t4 = pt2. Lefschetz fixed–point formula gives
#Xp = 1 + p3 + t2(1 + p)− t3.
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Modularity conjecture for Calabi–Yau manifolds
Let X be a Calabi–Yau manifold defined over Q. Denote ti :=

tr(Frob∗p : H i(X, Ql)). We have t0 = 1, t1 = 0, t5 = 0, t6 = p3. By
the Poincare duality t4 = pt2. Lefschetz fixed–point formula gives
#Xp = 1 + p3 + t2(1 + p)− t3.

Modularity conjectures for Calabi–Yau manifolds asserts that ap :=

t3 are coefficients of of a Fourier series of a modular form. There
are special cases when this conjecture has a more explicit form (and
some evidence for being true. One of them is when b2(X) = 2. It
is equivalent to X being rigid. Then ap are conjectured to be
coefficients of the Forier series of a weight 4 and level N cusp
form, N being divisible only by the primes of bad reduction.
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Modularity conjecture for Calabi–Yau manifolds
Let X be a Calabi–Yau manifold defined over Q. Denote ti :=

tr(Frob∗p : H i(X, Ql)). We have t0 = 1, t1 = 0, t5 = 0, t6 = p3. By
the Poincare duality t4 = pt2. Lefschetz fixed–point formula gives
#Xp = 1 + p3 + t2(1 + p)− t3.

Modularity conjectures for Calabi–Yau manifolds asserts that ap :=

t3 are coefficients of of a Fourier series of a modular form. There
are special cases when this conjecture has a more explicit form (and
some evidence for being true. One of them is when b2(X) = 2. It
is equivalent to X being rigid. Then ap are conjectured to be
coefficients of the Forier series of a weight 4 and level N cusp
form, N being divisible only by the primes of bad reduction.

Modularity conjecture for rigid Calabi–Yau manifold was almost
proved by L. Dieulefait, J. Manoharmayum. Their proof do not
determine the cusp form. There are only quite few known rigid
Calabi–Yau manifolds, for all of them the cusp form was computed
using a method due to Serre, Faltings and Livn (it is enough to
verify the equality of a well-described finite set of coefficients.)
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Double octic Calabi–Yau manifolds.
Let D be a sum of eight planes in P3, no six through a point, no
four through a line. Then the double covering of P3 branched along
D has a smooth model X being a Calabi–Yau manifold. There is
a simple formula for the euler characteristc of X. There is also a
method to compute the Hodge numbers.
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Double octic Calabi–Yau manifolds.
Let D be a sum of eight planes in P3, no six through a point, no
four through a line. Then the double covering of P3 branched along
D has a smooth model X being a Calabi–Yau manifold. There is
a simple formula for the euler characteristc of X. There is also a
method to compute the Hodge numbers.

There are nine rigid examples in the described family (one has two
variants). All examples have the following additional properties:
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four through a line. Then the double covering of P3 branched along
D has a smooth model X being a Calabi–Yau manifold. There is
a simple formula for the euler characteristc of X. There is also a
method to compute the Hodge numbers.

There are nine rigid examples in the described family (one has two
variants). All examples have the following additional properties:

• they are defined over Q,
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Double octic Calabi–Yau manifolds.
Let D be a sum of eight planes in P3, no six through a point, no
four through a line. Then the double covering of P3 branched along
D has a smooth model X being a Calabi–Yau manifold. There is
a simple formula for the euler characteristc of X. There is also a
method to compute the Hodge numbers.

There are nine rigid examples in the described family (one has two
variants). All examples have the following additional properties:

• they are defined over Q,

• their Picard groups are generated by divisors defined over Q,
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Double octic Calabi–Yau manifolds.
Let D be a sum of eight planes in P3, no six through a point, no
four through a line. Then the double covering of P3 branched along
D has a smooth model X being a Calabi–Yau manifold. There is
a simple formula for the euler characteristc of X. There is also a
method to compute the Hodge numbers.

There are nine rigid examples in the described family (one has two
variants). All examples have the following additional properties:

• they are defined over Q,

• their Picard groups are generated by divisors defined over Q,

• there is a nice explicit description of a resolution of singularities
(there are only eight types of singularities),
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Double octic Calabi–Yau manifolds.
Let D be a sum of eight planes in P3, no six through a point, no
four through a line. Then the double covering of P3 branched along
D has a smooth model X being a Calabi–Yau manifold. There is
a simple formula for the euler characteristc of X. There is also a
method to compute the Hodge numbers.

There are nine rigid examples in the described family (one has two
variants). All examples have the following additional properties:

• they are defined over Q,

• their Picard groups are generated by divisors defined over Q,

• there is a nice explicit description of a resolution of singularities
(there are only eight types of singularities),

• the reduction mod p is smooth for all primes p ≥ 5 (in fact for
most of them reduction mod 3 is also smooth).
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Arrangement no. 2

may be defined by the equation

xyzt(x + y)(y + z)(z + t)(t + x),

it consists of the faces of a tetrahedron and additional four planes
going trough four vertices of the tetrahedron and intersecting in

one point.
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Arrangement no. 6

may be defined by the equation

xyz(x− t)(y − t)(z − t)(x + y − t)(x + y + z − t),

it consists of the faces of a cube and additional two planes, one
through three vertices and the other through four vertices of the
cube and intersecting along the diagonal of a face.
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Arrangement no. 23

may be defined by the equation

xyz(x− t)(y − t)(z − t)(x + y − t)(x− y + z − t),

it consists of the faces of a cube and additional two planes, one
through three vertices and the other through four vertices of the
cube, having only one of the vertices of the cube in common.
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Arrangement no. 29

may be defined by the equation

xyzt(x + y + z + t)(y + z + t)(x− z + t)(x + y + 2t),

Arrangement no. 84

may be defined by the equation

xyzt(x + y + z + t)(2x + 2z + t)(2y + 2z + t)(x + y + 2z + 2t),

Sorry – no pictures
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Arrangement no. 44

may be defined by the equation

xyz(x− t)(y − t)(z − t)(x + y + z − t)(x− y + z − t),

it consists of the faces of a cube and additional two planes through
three vertices of the cube intersecting along the diagonal of a face.
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Arrangement no. 62

may be defined by the equation

xyz(x− t)(y − t)(z − t)(x + y + z − 2t)(x + y),

it consists of the faces of a cube and additional two planes, one plane through an edge

of the cube and parallel to a diagonal of the cube, and one plane through three vertices

of the cube not belonging to the first plane.
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Arrangement no. 86

may be defined by the equation

(x− t)(x + t)(y − t)(y + t)(z − t)(z + t)(x + y + z + t)(x + y + z − 3t),

it consists of the faces of a

cube and additional two paral-

lel planes, one through three

vertices of the cube and the

second through one. The 4–

fold points are: four vertices,

three points at infinity which

are the intersection of parallel

edges of the cube, and three

points of intersection at infin-

ity of a pair of parallel faces

of the cube and the additional

two planes.
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Arrangement no. 86a

with the same numerical data as arrangement 86 may be defined
by the equation

(x− t)(x + t)(y − t)(y + t)(z − t)(z + t)(x + y + z − t)(x + y + z − 3t),
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Arrangement no. 87

may be defined by the equation

(x− t)(x + t)(y − t)(y + t)(z − t)(z + t)(x + y + z + t)(x + y + z − t),

it consists of the faces of a cube and additional two parallel planes through three
vertices. The 4–fold points are: six vertices, three points at infinity which are the
intersection of parallel edges of the cube, and three points of intersection at infinity of
a pair of parallel faces of the cube and the additional two planes.
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Since the Picard groups are generated by divisors defined over Q we have t2 = ph1,1,
t4 = p2h1,1 and so

ap = 1 + p3 + (p + p2)h1,1 −#X̄p.
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Since the Picard groups are generated by divisors defined over Q we have t2 = ph1,1,
t4 = p2h1,1 and so

ap = 1 + p3 + (p + p2)h1,1 −#X̄p.

So to compute the coefficient ap we have to find number of points on X modulo p.
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Since the Picard groups are generated by divisors defined over Q we have t2 = ph1,1,
t4 = p2h1,1 and so

ap = 1 + p3 + (p + p2)h1,1 −#X̄p.

So to compute the coefficient ap we have to find number of points on X modulo p.

First we count points on the (singular) double covering of P3 – if the equation of the
branch locus if f(x, y, z, t) = 0, we count points on P3(Fp) for which value of f is zero,
square or not-square mod p. It is very easy (for a computer).
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Since the Picard groups are generated by divisors defined over Q we have t2 = ph1,1,
t4 = p2h1,1 and so

ap = 1 + p3 + (p + p2)h1,1 −#X̄p.

So to compute the coefficient ap we have to find number of points on X modulo p.

First we count points on the (singular) double covering of P3 – if the equation of the
branch locus if f(x, y, z, t) = 0, we count points on P3(Fp) for which value of f is zero,
square or not-square mod p. It is very easy (for a computer).

Now we have to take into account resolution of singularities, for seven types of sin-
gularities it is very easy the number of added points depends only on the number of
those types of singularities. Unfortunately if four planes intersects, but no three of
them contains a line, blow–up of that point replace one point by a double covering
of P2 branched along an arrangement of four lines. We count the points in a similar
manner as before.
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A C++ program gave the following table.
p 5 7 11 13 17 19 23 73

Arrangements 2, 87
ap -2 24 -44 22 50 44 -56 154

Arrangement 6
ap -10 -16 40 -50 -30 -40 -48 -630

Arrangement 23
ap -22 0 0 18 -94 0 0 1098
Arrangements 29, 44

ap -2 -24 44 22 50 -44 56 154
Arrangement 62

ap 2 -24 -44 -22 50 44 56 154
Arrangements 84, 86

ap 6 -16 12 38 -126 20 168 218
Arrangement 86a

ap -18 8 36 -10 18 -100 72 26

Comparing above with the database of modular form (by W. Stein) we can recognize
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