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Calabi–Yau manifolds

Definition

Calabi–Yau manifold is a complex, projective (kähler) threefold X
satisfying

KX = OX

H1(OX ) = 0.

there are no global holomorphic 1–forms on X

there exists a nowhere vanishing global holomorphic 3–forms X

Another definition:
Calabi–Yau manifold is a compact riemannian manifold with
holonomy group in SU(3) (holonomy group equal SU(3)).
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Numerical invariants of Calabi–Yau manifolds

Euler characteristic e(X ),

Hodge numbers hi ,j = dim H j(Ωi
X ) (0 ≤ i , j ≤ 3, i + i ≤ 6),

Betti numbers b0, . . . , b6, (bi = dimC H i (X ,C) =
∑

p+q=i
hij).

h00

h01 h10

h02 h11 h20

h03 h12 h21 h30

h13 h22 h31

h23 h32

h33
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e(X ) = 2(h11 − h12)
h11 = ρ(X ) Picard number
h12 dimension of deformation space
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L–series of a Calabi–Yau manifold

Let X be a Calabi–Yau manifold defined over Q and let p be a
prime of good reduction, i.e. the reduction Xp of X mod p is
smooth. By the Weil Conjecture the Zeta function of Xp can be
written as

P1,p(t)P3,p(t)P5,p(t)

P0,p(t)P2,p(t)P4,p(t)P6,p(t)

where Pi ,p is a polynomial of degree bi .

We define the i–th
cohomological L–series of X as

L(H i
ét(X̄ ,Ql), s) = (∗)

∏
p good prime

1

Pi ,p(p−s)

where (∗) stands for the Euler factors corresponding to the primes
of bad reduction.The most interesting is the third L–series

L(X , s) = L(H3
ét(X̄ ,Ql), s).
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Frobenius morphism

The L–series has expansion L(X , s) =
∑∞

k=1
ak (X )

ks .

By the proof of Weil Conjecture

Pi ,p(t) = det(1− t Frob∗p |H i
ét(X̄ ,Ql))

and so
ap(X ) = tr(Frob∗p |H i

ét)

for p prime, and ak(X ) can be recovered from ap(X ) for p prime
factors of k .
Lefschetz fixed point formula

#Xpr =
6∑

i=0

(−1)i tr(Frob∗p |H i
ét) = 1+p3+tr(Frob∗p |H2

ét)(1+p)−ap
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Modular forms

We call Γ := SL(2,Z) the full modular group. The group

Γo(N) :=

{(
a b
c d

)
∈ Γ | c ≡ 0(mod N)

}
, for N ∈ N

is called a Hecke subgroup of Γ.

An unrestricted modular form of weight k and level N is a
holomorphic function f on the upper half plane H such that

f
(

aτ+b
cτ+d

)
= (cτ + d)k f (τ) for

(
a b
c d

)
∈ Γo(N), τ ∈ H.

Since f (z + N) = f (z) we have Fourier expansion

f (τ) =
∞∑

n=−∞
cnqn, with q = exp(2πiτ/N).

f is called a modular form iff cn = 0 for n < 0.
If moreover c0 = 0, it is a cusp form.
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Modularity Conjecture for Calabi–Yau manifolds

Every Calabi–Yau manifold is modular in the sense that its L–series
is L–series of some modular form.
One dimensional Calabi–Yau manifolds are elliptic curves, in that
case the modularity conjecture is Taniyama–Shimura–Weil
Conjecture.

Two dimensional Calabi–Yau manifolds are K3 surfaces, in this
case middle cohomology has rank 20, but we consider only its
sublattice of transcendental cycles. In the case of maximal Picard
number (singular K3 surfaces) Livné showed that the L–series is
the one of some weight 3 modular form.
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Modularity Conjecture has particulary explicit form for rigid
Calabi–Yau manifolds, i.e. Calabi–Yau manifolds with b3 = 2.

Conjecture (Modularity Conjecture for rigid Calabi–Yau manifolds)

Let X be a rigid Calabi–Yau manifold defined over Q. Then there
exists a weight four cusp form f for Γ0(N) such that
L(f , s) = L(X , s), where N is an integer divisible only by bad
primes of X .

J.-M. Fontaine and B. Mazur Geometric Galois representations, Elliptic curves, modular forms, & Fermat’s last
theorem (Hong Kong, 1993), 41–78, Ser. Number Theory, I, Internat. Press, Cambridge, MA, 1995.
N. Yui, Update on the modularity of Calabi-Yau varieties, With an appendix by Helena Verrill. Fields Inst.
Commun., 38, Calabi-Yau varieties and mirror symmetry (Toronto, ON, 2001), 307–362, Amer. Math. Soc.,
Providence, RI, 2003.
K. Hulek, R. Kloosterman, M. Schütt, Modularity of Calabi–Yau varieties, preprint math.AG/0601238
C. Meyer, Modular Calabi-Yau threefolds, Fields Institute Monograph 22 (2005), AMS.

Modularity Conjecture for rigid Calabi–Yau manifold was proved by
Dieulefait and Manoharmayum under very mild assumptions on the
primes of bad reduction
L. Dieulefait and J. Manoharmayum, Modularity of rigid Calabi-Yau threefolds over Q. Calabi-Yau varieties and
mirror symmetry (Toronto, ON, 2001), 159–166, Fields Inst. Commun., 38, Amer. Math. Soc., Providence, RI,
2003.
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First examples of (modular) rigid Calabi–Yau manifolds

Schoen’s quintic: in P4 given by the equation

x5
0 + x5

1 + · · ·+ x5
4 − x0x1x2x3x4 = 0.

Fiber product of elliptic fibrations (Schoen):
Let p1 : S1 −→ P1 and p2 : S2 −→ P1 be rational elliptic surfaces
with sections, the fiber product X = S1 ×P1 S2 is a singular
Calabi–Yau manifold. Singularities of X are located on the product
of singular fibers of S1 and S2. If both fibers are semistable then
the only singularities are nodes.
The easiest case is of a self fiber product (S1 = S2 = S) and S
semistable. Then X has a smooth model X̂ defined over Q which
is a calabi–Yau manifold with h12(X̂ ) equals to four minus number
of singular fibers.
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Self fiber products of Beauville surfaces

There are 6 semistable, rational elliptic surfaces with four singular
fibers (Beauville surfaces). They give six modular Calabi–Yau
threefolds

Γ singular fibers weight 4 form level

Γ(3) I3, I3, I3, I3 η(3τ)8 9

Γ1(4) ∩ Γ(2) I4, I4, I2, I2 η(2τ)4η(4τ)4 8

Γ1(5) I5, I5, I1, I1 η(τ)4η(5τ)4 5

Γ1(6) I6, I3, I2, I1 η(τ)2η(2τ)2η(3τ)2η(6τ)2 6

Γ0(8) ∩ Γ1(4) I8, I2, I1, I1 η(4τ)16η(2τ)−4η(8τ)−4 16

Γ0(9) ∩ Γ1(3) I6, I3, I2, I1 η(3τ)8 8

where η(τ) = q
1

24
∏

n≥1(1− qn)

This construction was generalized
in several ways (f.i. M. Schütt).
There are several proofs of modularity, one based on the
Dieulefait–Manoharmayum theorem another on the Shimura
isomorphism and based on the Faltings–Serre–Livné method.
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The Faltings–Serre–Livné method

Theorem

Let S be a finite set of primes and let
ρ1, ρ2 : Gal(Q̄/Q) −→ Gl2(Q2) be continuous Galois
representations, unramified outside S and satisfying

1 tr ρ1 = tr ρ2 = 0 mod 2 and det ρ1 = det ρ2 mod 2

2 There exists a finite set T of primes, disjoint from S for which
the image of the set {Frobt : t ∈ T} in Gal(QS/Q) is
non–cubic and

tr ρ1(Frobt) = tr ρ2(Frobt) and det ρ1(Frobt) = det ρ2(Frobt)

for all t ∈ T .

Then ρ1 and ρ2 have isomorphic semi–simplifications. In particular
tr ρ1(Frobt) = tr ρ2(Frobt) for all t 6∈ S.
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Faltings–Serre-Livné method

Corollary

Let X be a rigid Calabi–Yau manifold defined over Q and let

f (q) =
∑∞

m=1
bmqm

be a cusp form of weight 4 for Γo(N).Let S be a set of primes
containning bad primes for X and prime divisors of N. Suppose
that

ap = bp = 0 mod 2

for all primes p 6∈ S and ap(X ) = bpfor all p ∈ T . Then
L(X , s) = L(f , s), in particular ap(X ) = bp for p 6]inS .

The set T is easy to describe for a given S .
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Double octic Calabi–yau manifolds

Let D ⊂ P3 be a smooth octic surface, π : X −→ P3 double
covering branched along D. Then X is a Calabi–yau manifold. If D
is singular then X is singular as well (singulrities of X coresponde
to those of D). However, D are “nice” there can exists a
Calabi–yau resolution of singularities.
I have studied the case of D being an octic arrangement (locally
looks like intersection of plane) with no sixfold point nor a fourfold
curve. Then we have a nice description of resolution of singularities
and formula for Hodge numbers. Also using the Lefschetz fixed
point formula it is easy to compute the trace of Frobenius hence to
prove modularity in rigid cases.
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Modularity of non–rigid Calabi–Yau manifolds

There are two explicit formulations for modularity of non–rigid
Calabi–Yau manifolds. One is (due to Livné and Yui)

L(X , s) = L(f2 ⊗ f3) or L(X , s) = L(f 1
2 ⊗ f 2

2 ⊗ f 3
2 ).

Examples come from a singular K3 surface S with involution iS
and elliptic curve E with involution iE . Then on E × S we have
diagonal involution i and the quotient (E × S)/i has a Calabi–Yau
resolution of singularities.
Similarly, if Ej is an elliptic curve with involution ij (j = 1, 2, 3),
then (E1 × E2 × E3)/D2 (where
D2 = {1, (i1, i2, 1), (i1, 1, i3), (1, i2, i3)}) has a Calabi–Yau
resolution of singularities.
The Calabi–Yau manifolds have L–series as above.
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Modularity of non–rigid Calabi–Yau manifolds

Another formularion for modularity was suggested by Hulek and
Verrill. Let Si , i = 1, . . . , r (r = h21(X )) be a birational ruled
surface over an elliptic curve Ei . Assume that the map

H3(X ,C) −→
r⊕

i=1

H3(Si ,C)

is surjective.
Under the same assumptions on bad primes as in Dieulefait and
Manoharmayum we get

L(X , s) = L(g4, s)
∏
j

L(g j
2, s − 1)

where g i
2 is the weiight 2 modular form for elliptic curve Ei and g4

is some weight 4 modular form.
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Modularity of non–rigid Calabi–Yau manifolds

If L(X , s) = L(g4, s)
∏

j L(g j
2, s − 1) then

ap(X ) = bp + p(c1
p + · · ·+ c r

p),

where bp (resp. c j
p) is a Fourier coefficient of g4 (resp. g j

2). In
particular ap(X ) ∼= bp mod p.

C. Meyer run an enormous computer search for double octic
Calabi–Yau manifolds with h12 = 0 or 1 satisfying the above
“numerical evidence” of modularity. Modularity of all 11 rigid
examples can be proved using the Faltings–Serre–Livné method,
the only delicate point is to correctly count points added in
resolution of singularities.
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Modularity of non–rigid Calabi–Yau manifolds

We proved modularity of 17 (out of 18) examples with h12 = 1
using the methods

existence of elliptic ruled surface (Hullek–Verrill)

correspondence with a product of a K3 surface and elliptic
curve (Livné–Yui)

correspondence with a (modular) rigid Calabi–Yau manifold

existence of an involution giving a splitting of the
fourdimensional representation into twodimensional
subrepresentations

In fact all proofs were based on finding a correspondence with a
fiber product of elliptic fibrations, all studied examples were given
by K3 fibrations with large Picard number, a K3 surface with large
Picard number is related to a product of elliptic curves.
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Corespondences between modular Calabi–Yau manifolds

There are many known modular Calabi–Yau manifolds, among
them 15 rigid with the unique weight 4 newform of level 8.
According to the tate Conjecture this should be explained by an
existence of correspondences between them.

With C. Meyer we found explicit examples of correspondences for
most pairs, in particular we join ten of them in a cycle.
We were able to construct only a few examples with some ad hoc
methods, in most cases we proceed by constructing first
correspondences with some fibers products of rational elliptic
fibrations.
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Higher dimensions

The first known modular example in dimension bigger then 3 was
due to Ahlgren. Let X be the variety given in C6 by

w 2 = x(x−1)(x−λ)y(y−1)(y−λ)z(z−1)(z−λ)t(t−1)(t− lambda)

Theorem (Ahlgren)

#Xp = p5 + 2p3 − 4p2 − 9p − 1− bp,

where bp is the unique weight 6 level 4 cusp form (which is
η(2τ)12).

With K. Hulek we proved that the projective closure (which is a
double cover of P5 branched along twelve hyperplanes) has a
Calabi–Yau smooth model X̃ with b5(X̃ ) = 2 and ap(X̃ ) = bp.
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Higher dimensions

Let E (resp. F ) be the elliptic curve given by the Weierstrass–ype
equation

y 2 = x3 − D (resp. y 2 = x3 − x).

Then E has action of Z3 and F has an action of Z4.

The quotients X n = En/Zn−1
3 and Y n = F n/Zn−1

4 have
Calabi–Yau resolutions of singularities Ỹ nsuch that for n odd
bn(X̃ n) = bn(Ỹn) = 2 and the L–series of X̃ n (resp. Ỹ n) equals
the L–series of the modular form corresponding to the n–th power
of the Hecke character corresponding to the curve E (resp. F ).
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